Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355796

RESUMO

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Assuntos
Proteínas de Bactérias , Resposta ao Choque Frio , Fatores de Terminação de Peptídeos , Biossíntese de Proteínas , Psychrobacter , Proteínas Ribossômicas , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestrutura , Microscopia Crioeletrônica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/ultraestrutura
2.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961452

RESUMO

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures where arabinomannan acts as a signal for growth phase transition. Finally, we demonstrate that LamH is important for Mycobacterium tuberculosis survival in macrophages. These data provide a new framework for understanding the biological role of LAM in mycobacteria.

3.
Microbiol Spectr ; 10(4): e0083322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35856675

RESUMO

In recent years the availability of genome sequence information has grown logarithmically resulting in the identification of a plethora of uncharacterized genes. To address this gap in functional annotation, many high-throughput screens have been devised to uncover novel gene functions. Gene-replacement libraries are one such tool that can be screened in a high-throughput way to link genotype and phenotype and are key community resources. However, for a phenotype to be attributed to a specific gene, there needs to be confidence in the genotype. Construction of large libraries can be laborious and occasionally errors will arise. Here, we present a rapid and accurate method for the validation of any ordered library where a gene has been replaced or disrupted by a uniform linear insertion (LI). We applied our method (LI-detector) to the well-known Keio library of Escherichia coli gene-deletion mutants. Our method identified 3,718 constructed mutants out of a total of 3,728 confirmed isolates, with a success rate of 99.7% for identifying the correct kanamycin cassette position. This data set provides a benchmark for the purity of the Keio mutants and a screening method for mapping the position of any linear insertion, such as an antibiotic resistance cassette in any ordered library. IMPORTANCE The construction of ordered gene replacement libraries requires significant investment of time and resources to create a valuable community resource. During construction, technical errors may result in a limited number of incorrect mutants being made. Such mutants may confound the output of subsequent experiments. Here, using the remarkable E. coli Keio knockout library, we describe a method to rapidly validate the construction of every mutant.


Assuntos
Elementos de DNA Transponíveis , Infecções por Escherichia coli , Escherichia coli/genética , Biblioteca Gênica , Humanos , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...